Ziyu Dong a, Hao Deng a,*, Timothy Kusky a, Ali Polat a,b, Guanglei Peng a, He Zhang a,
Lu Wang a, Junpeng Wang a
a State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan,
Hubei 430074, China
b School of the Environment, University of Windsor, Windsor, Ontario N9B 3P4, Canada
The onset of plate tectonics and crustal growth processes in the early Earth have been controversial scientific
issues in the geoscience. The North China Craton (NCC) preserves widespread 3.8–2.5 Ga rocks, providing an
ideal place to understand early continent formation and evolution. The Linshan complex located in the southern
segment of the Central Orogenic Belt (COB) of the NCC, is mainly composed of TTG (tonalite-trondhjemitegranodiorite)-
diorite gneisses and metamorphic volcanic-sedimentary units dominated by gabbro, basalt, basaltic
andesite and biotite-plagioclase gneiss. Detailed mapping on the scale of 1:100 of a structural transect shows that
the Linshan complex has mainly experienced two major deformation events including top-to-the-SE thrust faults
and late NE-trending high-angle normal faults. Detailed zircon U-Pb dating shows that gabbro, basaltic andesite,
and TTG gneiss mainly formed at ca. 2.52–2.50 Ga. Gabbros and basalts display enrichment of LREE and negative
Nb and Ta anomalies, and basaltic andesites display mixed MORB-IAT geochemical affinities. Basalts and basaltic
andesites are members of the Nb-enriched basalt series with high absolute Nb contents (>6 ppm). TTG gneisses
are geochemically divided into high-pressure and low-pressure TTGs. High-pressure TTGs are characterized by
high ratios of La/Ybcn (26.29–45.73) and fall into the adakitic region in the La/Ybcn-Ybcn diagram. Considering
the close contact with Nb-enriched basaltic series, it is proposed that high-pressure TTGs may have formed by
partial melting of a subducting oceanic slab with garnet and amphibole and/or rutile as residues. Low-pressure
TTGs are characterized by low ratios of La/Ybcn and Sr/Y with marked negative Eu anomalies, indicating partial
melting at shallow crustal levels. Regional tectonic relations have defined the Neoarchean Dengfeng island arcforearc
accretionary complex to the east of the Linshan complex. Thus, we propose that the gabbros-basaltsbasaltic
andesites in the Linshan complex mostly formed in a Neoarchean suprasubduction back-arc basin by
rifting of a TTG-dominated island arc terrane. The final closure of the back-arc basin resulted in their tectonic
juxtaposition forming thrust-imbricated structures. There may have been several Neoarchean “forearc-island-arcbackarc”
systems in the NCC that are similar to modern accretionary tectonic orogens, indicating that plate
tectonics has been in operation since at least 2.55–2.50 Ga.